

DEVELOPMENT OF NOVELS PEPTIDE COUPLING REAGENTS BASED ON 1,3-DIMETHYLBARBUTRIC ACID, THE OXYMA-B FAMILY

<u>Yahya E. Jad</u>,^a Sherine N. Khattab,^b <u>Beatriz G. de la Torre</u>,^{a,c} Thavendran Govender,^a Hendrik G. Kruger,^a Ayman El-Faham,^{b,d} and Fernando Albericio^{a,c,e,f,g}

^a Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa, ^b Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt, ^c School of Chemistry, Yachat Tech, Yachay City of Knowledge, 100119-Urcuqui, Ecuador, ^d Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia, ^e School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa, ^fInstitute for Research in Biomedicine and CIBER-BBN, Barcelona 08028, Spain, ^gDepartment of Organic Chemistry, University of Barcelona,

Luxembourg Technologies

Barcelona 08028, Spain. E-mail: <u>yahyajad@yahoo.com</u>E-mail: yahyajad@yahoo.com, <u>beatriz.garcia@upf.edu</u>

After the identification of the potential explosively of benzotriazole derivatives, mainly HOBt and HOAt [1], which are used as additive in carbodiimide based peptide formation, there has been a large development of new additives. Some time ago, some of us proposed the OxymaPure as a superior peptide coupling additive. OxymaPure has been showed always superior to HOBt and even in some cases superior to HOAt [2].

More recently, a new family of uronium salts based on isonitroso Meldrum's acid (HONM) was reported as stand-alone coupling reagents [3]. HONM shows a special orientation of the carbonyl moiety, which can play an assisted basic catalytic role by enhancing the nucleophilicity of the amino function during coupling. This modification should enhance the reactivity of the oximebased additive as a result of its more powerful electron-withdrawing effect compared with OxymaPure. Although, HONM is very reactive and even reacts with carbodiimides, which translates into a consumption of both coupling reagents with decreased of yields, its uronium salts showed a rather increased reactivity when compared with classical coupling reagents [3]. With the objective of fine-tuning the performance of OxymPure and with the idea of removing the ethyl ester of which some colleagues has suggested us the interest of having in our tools of synthetic reagents a similar derivative of OxymaPure with similar synthetic performance chemistry, but much better performance and the absence of potential side reactions. Herein, we are presenting a new additive, its potassium salt and its uronium salts. This new additive, Oxyma-B, is an oxime derived from 1,3-dimethylbarbituric acid, showing a similar cyclic structure as HONM with a special orientation of the carbonyl moiety, which can play an assisted basic catalytic role by enhancing the nucleophilicity of the amino function during coupling. In addition, Oxyma-B does not show any ester moiety in its structure and, therefore, there is no risk of any side-reaction.

Table 3. Yield and racemization during the formation of the formation of Z-Phg-Pro-NH, and Z-Phe-Val-Pro-NH, using uronium/aminium-type coupling reagents through [1+1] stepwise and [2+1] segment solution-phase coupling, respectively.^[a]

Entry	Peptide model	Coupling reagent	Yield (%) ^[b]	DL/LL or LDL/LLL (%) ^[c]
1	Z-Phg-Pro-NH ₂	HBTU	93.1	7.5
2		HATU	95.5	3.9
3		COMU	98.2	0.9
4		TOMBU	98.5	0.7
5		COMBU	93.2	0.9
6	Z-Phe-Val-Pro-NH ₂	HBTU	96.4	43.2
7		HATU	98.4	7.5
8		COMU	98.0	16.7
9		TOMBU	91.4	15.3
10		COMBU	89.2	20.3

Table 1. Yield and racemization during the formation of the formation of Z-Phg-Pro-NH, and Z-Phe-Val-Pro-NH₂, using DIC-mediated mediated coupling method in combination with different [a] Couplings were performed without preactivation in DMF at room temperature.[b] Conversion yield calculated by HPLC. Retention times of starting materials and products were identified by injection of pure sample. [c] Retention times for each epimer were identified after co-injection with a pure LL and DL or LLL and LDL samples.

Solid-phase peptide synthesis

Table 4. Percentage of tetrapeptide des-Aib (H-Tyr-Aib-Phe-Leu-NH₂) during solid-phase assembling of pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH₂) using DIC-mediated mediated coupling method in combination with different additives.^[a]

Entry	Coupling reagent	Preactivation time	Penta (%)	des-Aib (%) ^[b]
1	DIC/HOBt	3 min	8.4	83.1
2	DIC/HOAt	3 min	37.5	60.2
3	DIC/OxymaPure	3 min	42.8	50.4
4	DIC/Oxyma-B	No preactivation	19.4	72.6
5	DIC/Oxyma-B	3 min	26.4	61.1
6	DIC/Oxyma-B	$3 \min^{[c]}$	10.5	79.7
7	DIC/Oxyma-B	7 min	9.4	82.8
8	DIC/K-Oxyma-B	3 min	20.7	74.0

[a] One-hour coupling times were generally applied, except for Aib-Aib (one- hour double coupling). [b] Deletion tetrapeptide (des-Aib) was identified by peak overlap in HPLC with an authentic sample obtained in solid phase. [c] 0.1% DIEA was used.

Entry	Peptide model	Coupling reagent	Yield (%) ^[b]	DL/LL or LDL/LL L (%) ^[c]
1	Z-Phg-Pro-NH ₂	DIC/HOBt	94.3	11.0
2		DIC/HOAt	3.9	
3		DIC/OxymaPure	94.4	0.9
4		DIC/Oxyma-B	90.0	1.0
5		DIC/K-Oxyma-B	89.2	1.2
6	Z-Phe-Val-Pro-NH ₂	DIC/HOBt	96.3	14.8
7		DIC/HOAt	97.6	5.9
8		DIC/OxymaPure	91.9	7.7
9		DIC/Oxyma-B	90.7	5.1
10		DIC/K-Oxyma-B	93.3	9.7

Since the rac their un

Table 5. Percentage of tetrapeptide des-Aib (H-Tyr-Aib-Phe-Leu-NH₂) during solid-phase assembling of pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH₂) using uronium/aminium-type coupling reagents.^[a]

Entry	Coupling reagent	Base (equiv.)	Penta (%)	des-Aib (%) ^[b]		
1	HBTU	DIEA (2)	53.15	46.84		
2	HATU	DIEA (2)	97.90	2.09		
3	COMU	DIEA (2)	99.2	0.8		
4	TOMBU	DIEA (2)	90.41	9.56		
5	COMBU	DIEA (2)	82.5	17.5		
6	COMBU	DIEA (2) ^[c]	83.5	16.5		
[a] 30 min coupling times were generally applied, except for Aib-Aib (30 min double coupling). [b] Deletion tetrapeptide (des-Aib) was identified by peak overlap in HPLC with an authentic sample obtained in solid phase. [c] Fmoc-amino acids were preactivated with only 1 equiv DIEA for 15-30 s, with addition of another 1 equiv onto the resin after the first addition.						

ouplings were performed without preactivation in DMF at room temperature.[b] Conversion yield calculated by HPLC. Retention of starting materials and products were identified by injection of pure sample. [c] Retention times for each epimer were identified					Table 6. Closed vials hydrolytic stability of uronium/aminium-type coupling reagents in DMF.							
co-injection with a pu	are LL and DL or LLL and LDL	samples.		Entr	y Coupling reagent	2 min	1 h	4 h	6	24 h	48 h	
xyma-B showe	ed the best performance	in reducing racemiza	tion, the next models is for the	esting 1	HBTU	100	100	100	100	100	100	
mization durin	g solid-phase assembli	ng of serine, cystein	e and histidine residues becau 41	se of 2	HATU	100	100	100	100	100	99.2	
			.].	3	COMU	93.4	79.1	45.1	31.6	2.5	0	
e 2. Racemiza Ser, Cys, Cys(.	ation studies on the sc Acm) or His). ^[a]	olid-phase assembling	g of H-Gly-AA-Phe-NH ₂ (wh	ere 4	TOMBU COMBU	97.1 88.4	95.5 85 1	89.2 70.8	83.9 60.9	34.9 9 5	13.3 0	
Entry	Peptide model	Coupling reagent	DL/LL (%)	5		00.1	0.5.1	70.0	00.7			
1	H-Gly-Ser-Phe-NH ₂	DIC/HOBt	3.3	We	thank Voay Luxamb	Acknowledgments						
2		DIC/HOAt	0.4	This	work was funded in	part by	the CICYT	(CTQ2012	-30930), the	e Generalita	it de Catalunya	
3		DIC/OxymaPure	0.4	(200 (Spa	(2009SGR1024), and the Institute for Research in Biomedicine Barcelona (Spain); the National Research Foundation, the University of KwaZulu Nata care for their financial support (South Africa); and SENESCYT (Ecuador).							
4		DIC/Oxyma-B	0.3	care								
5	H-Gly-Cys-Phe-	DIC/HOBt	0.5	0.5 Conclusions								
6	NH_2	DIC/HOAt	0.4	• Oxy	ma-B has showed a prior in all cases to H	ure in terms	of conversa	ion, this means				
7		DIC/OxymaPure	0.3	supe	pressor than OxymaPi	HOAt.	At.					
8		DIC/Oxyma-B	0.3	• In s	 In solid-phase peptide synthesis, Oxyma-B and K-Oxyma-B rendered the product in high purity than HOBt but in lower purity than HOAt and OxymaPure. TOMBU and COMBU rendered the product rendered the product in higher purity than HBT and HATU and similar to COMU in stepwise coupling. In segment coupling, TOMBU and COMBU rendered the product rendered the product in higher purity than HBTU similar. 							
9	H-Gly-Cys(Acm)-	DIC/HOBt	0.4	• TON								
10	Phe-NH ₂	DIC/HOAt	0.3	and								
11		DIC/OxymaPure	0.3	COMU and lower than HATU.							ty than 11D10, similar to	
12		DIC/Oxyma-B	0.3	• In so than	 In solid-phase peptide synthesis, TOMBU and COMBU rendered the product in higher purity than HBTU but in lower purity than HATU and COMU. TOMBU and COMBU are less stable than HBTU and HATU in DMF but they are more stable than COMU. 							
13	H-Gly-His-Phe-NH ₂	DIC/HOBt	1.1	• TON								
14		DIC/HOAt	1.9	than								
15		DIC/OxymaPure	3.0			-	Refer	ences				
16		DIC/Oxyma-B	1.0	[1] K. D [2] R. S [2] A. F). Wehrstedt, P. A. Wand ubirós-Funosas, R. Prohe 1 Eaborn, P. Subirás, Eur	rey, D. Hei ms, R. Barb	tkamp, <i>J. Ha</i> z pas, A. El-Fah	<i>zard. Mater.</i> , am, F. Alberi	126, 1 (2005) cio, <i>Chem. Eu</i>	er. J., 15, 9394	4 (2009)	
[a] Couplin	gs were performed with 5 min ac	ctivation and one hour coupling	g time in DMF at room	[3] A. E [4] W. V	/an Den Nest, S. Yuval, I	F. Albericio	o, J. Pept. Sci	., 7, 115-120	, 3041 (2010) (2001)			